
V5. Controls
    Controls within ViewIt windows are much more powerful than the standard controls seen in
Mac dialogs.    This power is based upon an extension of the Control Manager that (1) stores 
more information about the characteristics of each control, and (2) sends a wider variety of 
messages to each control. This extension is what makes it possible to support multiple styles
and colors, as well as complex controls such as this help control that contains its own scroll 
bar and can respond to a full range of events.
    This topic presents information about ViewIt controls that applies to all control types:    how
to get info about existing controls, which toolbox calls work with ViewIt controls, and ViewIt's
support for control scrolling, growing, styles, colors, etc.    Information about specific control 
types can be obtained from the corresponding driver's on-line help.    To open such help,
 1. Add the control of interest to a ViewIt window
 2. Enter edit mode (Option-âŒ˜-Shift)
 3. Select the control (click once on it)
 4. Open the Control dialog (shortcut:    triple click)
 5. Press the "Driver Help" button
The menu controls at the top of this window, for example, are supported by the BaseCt basic
control driver which has an on-line help window that describes all of the control types that it 
supports:    text, icons, lists, menus, dials, etc.

Getting Info
    The extra information associated with each ViewIt control is stored in a relocatable block 
whose handle can be found in the "contrlDefProc" field of the control's standard control 
record (which is itself another relocatable block).    Since it would be a headache for 
programmers to retrieve this info from relocatable blocks, ViewIt's GetCtl command can be 
used to get the info from both the standard control record and the extra block (see GetCtl in 
"Commands" topic).
    GetCtl copies the content of the two blocks into the fRec variables cNext to cString, where 
cNext to cTitle corresponds to the standard control record, and cStuff to cString is a copy of 
the supplemental record.    GetCtl also returns the control's control handle in cControl, info 
about its position in the control list in ciIndex, cvIndex, and ccIndex, and the driver's baseID 
in cBaseID (see the "fRec Record" topic for brief description of each variable).
    Common uses of GetCtl include:
- getting the control handle for use in other calls
- determining the current value or state of a control
- getting the current control rect prior to drawing
- getting the handle of a resource linked to the control
WARNING:    Do not assume that the content of fRec variables returned by GetCtl is 
preserved across calls to the Control Manager or the FaceIt dispatching procedure.    Values 
that might need to be reused, such as a cControl control handle, should be saved in program
variables.    One exception:    Most UtilIt commands preserve the "w" and "c" variables.

Toolbox Calls
    Although we have greatly enhanced the capabilities of controls in ViewIt windows, most of 
the Control Manager toolbox calls can continue to be used with ViewIt controls.    Moreover, 
toolbox calls applied to view controls in ViewIt windows will automatically affect all daughter 
controls in the view (i.e., hiding a view will also hide controls within the view).

The toolbox calls supported are:
      HiliteControl              SetCtlValue
      ShowControl                  SetCtlMin
      HideControl                  SetCtlMax
      Draw1Control                GetCtlValue
      SizeControl                  GetCtlMin



      MoveControl                  GetCtlMax
      DragControl                  SetCRefCon
      GetCtlAction                GetCRefCon
      GetCTitle                      SetCTitle
where ViewIt's GetCtl makes the "Get..." calls unnecessary, DrwCtl can be used in place of 
"Draw1Control", ShoCtl in place of "ShowControl" and "HideControl", and ActCtl in place of 
"HiliteControl".
    CAVEAT:    The Control Manager does not always send the proper messages to controls that
are hidden.    This is due to the fact that it assumes that controls redraw themselves in a 
simple way based upon the current state of their control record.    Many ViewIt controls, 
however, maintain private data that must be updated whenever the control is moved, 
resized, or has its value or hilite state changed.    With respect to moving and resizing, ViewIt
makes an effort to compensate for the Control Manager by fixing a hidden control's private 
size-related data whenever it is reshown.    When using "SetCtl..." or "HiliteControl", however,
you may find that these do not work properly with complex, hidden ViewIt controls.

The toolbox calls not supported are:
      DrawControls                UpdtControl
      NewControl                    GetNewControl
      DisposeControl            KillControls
      FindControl                  TestControl
      TrackControl                SetCtlAction
where ViewIt's AddCtl or AddVew should be used in place of "NewControl" and 
"GetNewControl", DspCtl in place of "DisposeControl" and "KillControls", and the others are 
replaced by other ViewIt features and commands.    NOTE:    These restrictions and 
substitutions only apply to ViewIt controls.    Private controls maintained as part of a ViewIt 
control (such as the scroll bar in this help control), are treated as standard Mac controls by 
the control driver.

Rectangles
    The settings displayed in ViewIt's Bounds dialog are the ones saved in FWND, FVEW, or 
FCTL resources.    When controls are initialized from such resources, the "Pen", "Bounds", 
"Indent", and "Content" information from the resource is converted to the cRect, cClip, 
cContent, and cLimit rectangles used by ViewIt and control drivers.
    cRect is the standard control bounds.    cClip is the visible content area of the control (= 
cRect - frame and indent).    cLimit defines the minimum & maximum bounds of cRect when 
resizing the control.    cContent is either the same as cClip, growing and shrinking with the 
control bounds, or is a fixed size that can be larger or smaller than cClip.
    Many control drivers ignore cContent and always draw their content to fit cClip.    In this 
case it is best to set up cContent so that it tracks cClip.    This is done by setting the "Max H" 
and "Max V" content values in the Bounds dialog to zero.    This help control, for example, 
makes no use of cContent, and manages its own scrolling.
    Other control drivers and types do make use of cContent.    The SICN-based static controls 
at the top of this window, for example, have non-zero "Max H" and "Max V" content values to
inform the driver that their contents should not be stretched to fit cClip.

Scrolling
    Another use of cContent is to support "hand scrolling" of a control's content.    This support 
is built into ViewIt, and is activated by setting a non-zero "Max H" or "Max V" and checking 
the hand icon in the Bounds dialog.    When above the control, the cursor is then changed to 
a hand which can be used to "hand drag" the control's contents:    dragging the content 
down moves cContent lower relative to cClip, up moves cContent higher, etc.    This feature 
will only work with controls that draw their contents into cContent.    The most common use 
is to support hand dragging of the content of views, although views can also support scroll 
bar-based scrolling independently.



    Controls with content areas larger than cClip can also be scrolled directly by programs via 
the ScrCtl command.    A program can also use ScrCtl to resize the content area of a control.  
This capability is most often used in programs that dynamically construct views that have a 
varying number of daughter controls:    AddVew adds the view, ScrCtl adjusts its content size,
and AddCtl adds daughter controls.

Growing
    Controls can be "attached" to the right or bottom sides of their parent views, and views to 
the right or bottom sides of their parent window, by setting the "Attach Right" or "Attach 
Bottom" options in the Bounds dialog.    If the window is zoomable or growable (options set in
Window dialog), then the attached controls and views that are not of a fixed size ("Min H" ≠ 
"Max H" or "Min V" ≠ "Max V") are used to determine the minimum and maximum window 
size (via the control or view's cLimit rectangle described above).
    This help window, for example, contains one view that is attached to the bottom and right 
sides of the window, and a help control that is attached to the bottom and right sides of the 
view.    If the window size is changed, then the attached view and control are resized to fit 
the new window size. Also note that attached controls are aligned with the right edge of the 
parent view's visible content area, which explains why, in the case of this window, the help 
control is indented a few pixels from the view's edges (the view has a 3-pixel right and 
bottom indent).
    Although ViewIt makes growing and zooming quite easy to implement, there are a few 
guidelines you should follow to achieve the best results:
• If the window is growable or zoomable, then at least one view in the window should be 
attached to both the bottom and right sides of the window.
• If more than one view is attached to the both the bottom and right sides of the window 
(such as when supporting the "paging" of views), then each of these overlapping views 
should have the same frame and indent size.    This ensures that the grow box is drawn 
properly as views are switched.
• Do not attach controls to views that are set up to be hand scrolled or scrolled via scroll 
bars (think about it).    Such views can themselves, however, be attached to windows.
• ViewIt does not protect you from adding attached controls or views whose limits cannot be
reconciled (i.e., when one control's maximum size is smaller than another control's minimum
size).    Strange zoom or grow behavior will result in such cases.
• ViewIt updates window and control size limits according to the attached controls and views
in just two cases:    (1) when windows are created, and (2) when leaving editing mode.    If 
your program adds, removes, moves, or resizes (including resizing the content area with 
ScrCtl) attached controls or views using ViewIt or toolbox commands, then call SizWnd with 
b = c = 0 to force ViewIt to update all attachments.    This requirement does not apply to 
hiding and showing.

Floating
    Controls that are attached to the right or bottom sides of their parent view or window, but 
are of a fixed size ("Min H" = "Max H" or "Min V" = "Max V"), will appear to "float" with the 
right or bottom edge as the parent view or window is resized (i.e., they remain attached by 
moving rather than stretching).    Two of the guidelines given above also apply to floating 
controls:
• Do not attach floating controls to views that are set up to be hand scrolled or scrolled via 
scroll bars.
• ViewIt updates the position of floating controls or views at the same time that it updates 
the size of attached controls or views that grow with their parent view or window.

Styles
    Each control has a text font, size, and style associated with it.    This information is found, 
respectively, in cTxFont, cTxSize, and cTxFace after calling GetCtl, and can be reset from 



within ViewIt's edit mode via its Style menu.
    ViewIt's StlCtl command can be used by a program to directly reset the text font, size, or 
style of an existing control (see Commands topic).    This is equivalent to using ViewIt's Style 
menu, and results in redrawing the control.

Colors
    Each "part" of a control can be a different color.    With the introduction of System 7, Apple 
defined 15 distinct control parts corresponding to the 15 items in ViewIt's Color menu.    Most
control drivers support the first three of these colors:    frame, body (background), and 
content.    The "System" or default colors for these parts are black frame, white body, and 
black content.
    If the "System" item is checked in the Colors menu, then the control uses the default 
colors and its cColors handle will be nil.    If at least one color has been chosen from the 
Colors menu for a control part (even if it is the same color as the part's default color), then 
ViewIt creates a control color table for the control, a handle to which can be found in cColors 
(after calling GetCtl).    cColors is a handle to a relocatable block that has the following 
structure:
    6 bytes miscellaneous stuff
    2-byte integer = number of entries - 1
      2-byte integer = part number
      6-byte RGBColor = part color
      2-byte integer = part number
      6-byte RGBColor = part color
      ...
where the "part numbers" for frame, body, and content are, respectively, 0, 1, and 2.
    Although there are toolbox calls that can be used to reset control color tables, the simplest
way to manipulate control colors from within a program is to simply get/set colors in an 
existing table.    This approach requires that the control being manipulated has a non-empty 
color table, which can be assured by directly setting at least one part color using ViewIt's 
Colors menu when in editing mode.
    The UtilIt command GetFgC can be used to get a color from a cColors table:
 FaceIt(nil,GetFgC,0,-2,ord(cColors),2);
where "2" in this case is the part number corresponding to the control's content, and the 
color is returned in uRGB.
    To directly reset a color, the color entry with the proper part number must be found.    In 
Pascal, such a search would look something like (if cColors is type "CCTabHandle"),
 if (cColors <> nil) then
    with cColors^^ do
      for i := 0 to ctSize do
        if (ctTable[i].value = 2) then
          begin
            ctTable[i].rgb := newColor;
            leave;
          end;
where "2" refers to the content part, "newColor" will be the new RGB color of the control's 
content, and DrwCtl can be used to then redraw the control.

Best Colors
    For the best appearance across all types of Macintoshes, use relatively light body 
(background) colors (such as the yellow in this control), and darker content and frame 
colors.    This will ensure that control backgrounds do not turn to black on black-and-white 
screens, and that content and frames do not become white.    The reverse use of darker 
backgrounds and lighter content and frames does not map well to lower screen depths.
    Also note that, when testing the display of control colors at different screen depths, the 
appearance of a control on a one-bit deep black-and-white device with Color QuickDraw 
installed will not always be the same as its appearance on a Mac without Color QuickDraw 



(such as a Mac+).    Always check the appearance of colored controls at varying screen 
depths, in both color and non-color windows, and on older Macs without Color QuickDraw.


